Graphical model selection is a seemingly impossible task when many pairs of variables are never jointly observed; this requires inference of conditional dependencies with no observations of corresponding marginal dependencies. This under-explored statistical problem arises in neuroimaging, for example, when different partially overlapping subsets of neurons are recorded in non-simultaneous sessions. We call this statistical challenge the "Graph Quilting" problem. We study this problem in the context of sparse inverse covariance learning, and focus on Gaussian graphical models where we show that missing parts of the covariance matrix yields an unidentifiable precision matrix specifying the graph. Nonetheless, we show that, under mild conditions, it is possible to correctly identify edges connecting the observed pairs of nodes. Additionally, we show that we can recover a minimal superset of edges connecting variables that are never jointly observed. Thus, one can infer conditional relationships even when marginal relationships are unobserved, a surprising result! To accomplish this, we propose an $\ell_1$-regularized partially observed likelihood-based graph estimator and provide performance guarantees in population and in high-dimensional finite-sample settings. We illustrate our approach using synthetic data, as well as for learning functional neural connectivity from calcium imaging data.
翻译:图形模型选择似乎是一项看似不可能的任务, 此时许多变量从未同时观察到; 这要求推断有条件的依赖性, 没有观测相应的边际依赖性。 这种探索不足的统计问题出现在神经成像中, 例如, 在非同时会话中记录了神经元中部分重叠的不同子子集。 我们称这一统计挑战为“ 粗格堆积” 问题 。 我们研究这个问题时使用的是少见的反常相异学习, 并关注高斯的图形模型, 其中我们显示, 共变矩阵的缺失部分产生无法辨别的精确矩阵来指定图表。 尽管如此, 我们显示, 在温和的条件下, 可以正确识别连接所观测到的节点组合的边缘。 此外, 我们表明, 我们可以回收最小的连接变量边缘的超集层, 但这些变量从未共同观察到的。 因此, 即使在边际关系不被观测到, 我们也可以推断出一个有条件的关系。 为了达到这个目的, 我们建议一个 $\_ $_ $1$1$% 常规部分观测到的概率图示图示图示图示图表的图象学中。, 将功能性数据作为数据 以高维度 学习 。