Detecting the dimensionality of graphs is a central topic in machine learning. While the problem has been tackled empirically as well as theoretically, existing methods have several drawbacks. On the one hand, empirical tools are computationally heavy and lack theoretical foundation. On the other hand, theoretical approaches do not apply to graphs with heterogeneous degree distributions, which is often the case for complex real-world networks. To address these drawbacks, we consider geometric inhomogeneous random graphs (GIRGs) as a random graph model, which captures a variety of properties observed in practice. These include a heterogeneous degree distribution and non-vanishing clustering coefficient, which is the probability that two random neighbours of a vertex are adjacent. In GIRGs, $n$ vertices are distributed on a $d$-dimensional torus and weights are assigned to the vertices according to a power-law distribution. Two vertices are then connected with a probability that depends on their distance and their weights. Our first result shows that the clustering coefficient of GIRGs scales inverse exponentially with respect to the number of dimensions, when the latter is at most logarithmic in $n$. This gives a first theoretical explanation for the low dimensionality of real-world networks observed by Almagro et. al. [Nature '22]. Our second result is a linear-time algorithm for determining the dimensionality of a given GIRG. We prove that our algorithm returns the correct number of dimensions with high probability when the input is a GIRG. As a result, our algorithm bridges the gap between theory and practice, as it not only comes with a rigorous proof of correctness but also yields results comparable to that of prior empirical approaches, as indicated by our experiments on real-world instances.


翻译:检测图形的维度是机器学习的一个中心主题。 虽然问题已经从经验上和理论上解决了, 但现有的方法有一些缺点。 一方面, 实验工具在计算上很重, 缺乏理论基础。 另一方面, 理论方法并不适用于具有不同度分布的图表, 这在复杂的现实世界网络中通常是这样的情况。 为了解决这些缺陷, 我们将几何不均匀的随机图( Girgs) 视为随机图模型, 它捕捉了实践中观察到的各种属性。 其中包括不同度分布和非损耗组集系数。 一方面, 实验工具在计算上非常重, 缺乏理论基础基础基础基础。 在GIRGs 中, 美元垂直值分布在以美元为维度分布上, 重则根据权力法分布, 将两面的随机随机随机随机随机图( Girgs) 作为随机数, 这取决于它们的距离和重量。 我们的第一个结果显示, GIRGs 的基值比例在数值上, 不以指数为指数值的数值值, 也以正值为正值的数值 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
12+阅读 · 2022年1月26日
Arxiv
14+阅读 · 2020年12月17日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员