We derive minimax adaptive rates for a new, broad class of Tikhonov-regularized learning problems in Hilbert scales under general source conditions. Our analysis does not require the regression function to be contained in the hypothesis class, and most notably does not employ the conventional \textit{a priori} assumptions on kernel eigendecay. Using the theory of interpolation, we demonstrate that the spectrum of the Mercer operator can be inferred in the presence of "tight'' $L^{\infty}$ embeddings of suitable Hilbert scales. Our analysis utilizes a new Fourier capacity condition, characterizes the optimal Lorentz range space of a modified Mercer operator in certain parameter regimes.
翻译:我们的分析并不要求假设等级包含回归功能,最显著的是不使用常规的对内核前置偏移的假设。我们利用内推理论,证明Mercer经营者的频谱可以在适当的Hilbert尺度中存在“ight' $L ⁇ infty}$ 嵌入 ” 的情况下被推断出来。我们的分析利用了新的Fourier能力条件,将修改后的Mercer经营者在某些参数系统中的最佳Lorentz范围空间定性为最佳Lorentz范围空间。