The Laplacian-constrained Gaussian Markov Random Field (LGMRF) is a common multivariate statistical model for learning a weighted sparse dependency graph from given data. This graph learning problem is formulated as a maximum likelihood estimation (MLE) of the precision matrix, subject to Laplacian structural constraints, with a sparsity-inducing penalty term. This paper aims to solve this learning problem accurately and efficiently. First, since the commonly-used $\ell_1$-norm penalty is less appropriate in this setting, we employ the nonconvex minimax concave penalty (MCP), which promotes sparse solutions with lower estimation bias. Second, as opposed to most existing first-order methods for this problem, we base our method on the second-order proximal Newton approach to obtain an efficient solver for large-scale networks. This approach is considered the most efficient for the related graphical LASSO problem and allows for several algorithmic features we exploit, such as using Conjugate Gradients, preconditioning, and splitting to active/free sets. Numerical experiments demonstrate the advantages of the proposed method in terms of \emph{both} computational complexity and graph learning accuracy compared to existing methods.
翻译:Laplacian 受限制的 Gaussian Markov Rand Rand Field (LGMRF) 是一个常见的多变量统计模型, 用于从给定的数据中学习一个加权稀疏的仰食性图表。 这个图表学习问题被作为精确矩阵的最大可能性估计( MLEE), 受 Laplacian 结构制约, 且具有隐性诱导性惩罚条件。 本文旨在准确、 高效地解决这个学习问题。 首先, 由于通常使用的 $\ ell_ 1美元- 诺尔姆罚款在此设置中不那么合适, 我们使用非convex 迷你麦角结结节罚款( MCP), 以较低的估计偏差促进稀疏的解决方案。 其次, 相对于目前针对这一问题的多数头等方法, 我们的方法是以二阶准准准牛顿方法为基础, 以获得一个高效的大型网络溶液处理器。 这种方法被认为对相关的图形 LASOS 问题最为有效, 并允许我们使用几种算法特征, 例如使用Congate Grate Grate Grate Realizations, subilding aclegylegylegations.