$L^1$ based optimization is widely used in image denoising, machine learning and related applications. One of the main features of such approach is that it naturally provide a sparse structure in the numerical solutions. In this paper, we study an $L^1$ based mixed DG method for second-order elliptic equations in the non-divergence form. The elliptic PDE in nondivergence form arises in the linearization of fully nonlinear PDEs. Due to the nature of the equations, classical finite element methods based on variational forms can not be employed directly. In this work, we propose a new optimization scheme coupling the classical DG framework with recently developed $L^1$ optimization technique. Convergence analysis in both energy norm and $L^{\infty}$ norm are obtained under weak regularity assumption. Such $L^1$ models are nondifferentiable and therefore invalidate traditional gradient methods. Therefore all existing gradient based solvers are no longer feasible under this setting. To overcome this difficulty, we characterize solutions of $L^1$ optimization as fixed-points of proximity equations and utilize matrix splitting technique to obtain a class of fixed-point proximity algorithms with convergence analysis. Various numerical examples are displayed to illustrate the numerical solution has sparse structure with careful choice of the bases of the finite dimensional spaces. Numerical examples in both smooth and nonsmooth settings are provided to validate the theoretical results.
翻译:在图像脱色、机器学习和相关应用中广泛使用基于$L$1美元的优化,这种方法的主要特征之一是,它自然在数字解决方案中提供一个稀疏的结构。在本文中,我们研究了一种基于$1美元的混合DG方法,用于非diverence形式的二级椭圆方程。非diverence形式的椭圆式PDE产生于完全非线性PDE的线性化。由于方程式的性质,基于变式形式的经典限定元素方法不能直接使用。在这项工作中,我们提出了一个新的优化方案,将古典DG框架与最近开发的1美元优化技术结合起来。能源规范与$L ⁇ infty}的趋同式分析在常规性假设下获得。这种以非线性标码形式出现的椭略式PDE出现在完全非线性PDE的线性化中,因此传统梯度方法也因此失效。因此,所有基于梯度的解决方案在此背景下已不再可行。为了克服这一困难,我们把$L$1的优化解决方案描述为近距离级选择的固定的GDDF框架,而最近开发了1美元优化技术。在近端方阵列的离差级的离差级模型分析中,同时展示了Slationalalalimalimalimalimalimalimalimalimalal exmlationalbalbalbalbalbalbalbalbalbalus exalbalbalgus ex ex exalizalus exalus ex exalbal ex exalbalgalgalgalviolgalus ex ex ex ex ex ex ex ex ex ex exal ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex exalal ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex