$L^1$ based optimization is widely used in image denoising, machine learning and related applications. One of the main features of such approach is that it naturally provide a sparse structure in the numerical solutions. In this paper, we study an $L^1$ based mixed DG method for second-order elliptic equations in the non-divergence form. The elliptic PDE in nondivergence form arises in the linearization of fully nonlinear PDEs. Due to the nature of the equations, classical finite element methods based on variational forms can not be employed directly. In this work, we propose a new optimization scheme coupling the classical DG framework with recently developed $L^1$ optimization technique. Convergence analysis in both energy norm and $L^{\infty}$ norm are obtained under weak regularity assumption. Such $L^1$ models are nondifferentiable and therefore invalidate traditional gradient methods. Therefore all existing gradient based solvers are no longer feasible under this setting. To overcome this difficulty, we characterize solutions of $L^1$ optimization as fixed-points of proximity equations and utilize matrix splitting technique to obtain a class of fixed-point proximity algorithms with convergence analysis. Various numerical examples are displayed to illustrate the numerical solution has sparse structure with careful choice of the bases of the finite dimensional spaces. Numerical examples in both smooth and nonsmooth settings are provided to validate the theoretical results.


翻译:在图像脱色、机器学习和相关应用中广泛使用基于$L$1美元的优化,这种方法的主要特征之一是,它自然在数字解决方案中提供一个稀疏的结构。在本文中,我们研究了一种基于$1美元的混合DG方法,用于非diverence形式的二级椭圆方程。非diverence形式的椭圆式PDE产生于完全非线性PDE的线性化。由于方程式的性质,基于变式形式的经典限定元素方法不能直接使用。在这项工作中,我们提出了一个新的优化方案,将古典DG框架与最近开发的1美元优化技术结合起来。能源规范与$L ⁇ infty}的趋同式分析在常规性假设下获得。这种以非线性标码形式出现的椭略式PDE出现在完全非线性PDE的线性化中,因此传统梯度方法也因此失效。因此,所有基于梯度的解决方案在此背景下已不再可行。为了克服这一困难,我们把$L$1的优化解决方案描述为近距离级选择的固定的GDDF框架,而最近开发了1美元优化技术。在近端方阵列的离差级的离差级模型分析中,同时展示了Slationalalalimalimalimalimalimalimalimalimalal exmlationalbalbalbalbalbalbalbalbalbalus exalbalbalgus ex ex exalizalus exalus ex exalbal ex exalbalgalgalgalviolgalus ex ex ex ex ex ex ex ex ex ex exal ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex exalal ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
92+阅读 · 2021年5月17日
Arxiv
11+阅读 · 2020年12月2日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员