The change-plane Cox model is a popular tool for the subgroup analysis of survival data. Despite the rich literature on this model, there has been limited investigation into the asymptotic properties of the estimators of the finite-dimensional parameter. Particularly, the convergence rate, not to mention the asymptotic distribution, has not been fully characterized for the general model where classification is based on multiple covariates. To bridge this theoretical gap, this study proposes a maximum smoothed partial likelihood estimator and establishes the following asymptotic properties. First, it shows that the convergence rate for the classification parameter can be arbitrarily close to 1/n up to a logarithmic factor under a certain condition on covariates and the choice of tuning parameter. Given this convergence rate result, it also establishes the asymptotic normality for the regression parameter.
翻译:更改平面 Cox 模型是分组分析生存数据的一个受欢迎的工具。 尽管该模型的文献丰富, 但对于有限维参数的测算员的无症状特性的调查有限。 特别是, 在基于多个共变量进行分类的一般模型中, 趋同率, 更不用提无症状分布, 尚未对通用模型的趋同率作充分的描述。 为了缩小这一理论差距, 本研究建议了最大平滑的局部概率估测器, 并设定了以下的静态属性。 首先, 它表明分类参数的趋同率可以任意接近于1/n, 在共变数和调试参数的选择等特定条件下, 最高可任意接近对数系数。 鉴于这一趋同率的结果, 它还确定了回归参数的无症状常态性。