We introduce a framework that enables efficient sampling from learned probability distributions for MRI reconstruction. Different from conventional deep learning-based MRI reconstruction techniques, samples are drawn from the posterior distribution given the measured k-space using the Markov chain Monte Carlo (MCMC) method. In addition to the maximum a posteriori (MAP) estimate for the image, which can be obtained with conventional methods, the minimum mean square error (MMSE) estimate and uncertainty maps can also be computed. The data-driven Markov chains are constructed from the generative model learned from a given image database and are independent of the forward operator that is used to model the k-space measurement. This provides flexibility because the method can be applied to k-space acquired with different sampling schemes or receive coils using the same pre-trained models. Furthermore, we use a framework based on a reverse diffusion process to be able to utilize advanced generative models. The performance of the method is evaluated on an open dataset using 10-fold undersampling in k-space.
翻译:我们引入了一个框架,以便从为MRI重建所学的概率分布中进行高效取样。不同于传统的深层次学习的MRI重建技术,样本来自使用Markov链Monte Carlo(MCMC)方法测量的K-空间的后方分布。除了对图像的后方(MAP)最大估计外,还可以用传统方法获得最小平均差(MMSE)估计值和不确定性图。数据驱动的Markov链系从从特定图像数据库所学的基因化模型中构建,独立于用于模拟K-空间测量的前沿操作者。这提供了灵活性,因为这种方法可以适用于使用不同取样方法获得的 k-空间,或者使用相同的预先培训模型接收线圈。此外,我们使用一个基于反向扩散过程的框架,以便能够利用先进的基因化模型。该方法的性能是通过使用在 k-空间内取样的10倍的开放数据集进行评估的。