We present a framework for direct monocular odometry based on depth prediction from a deep neural network. In contrast with existing methods where depth information is only partially exploited, we formulate a novel depth prediction residual which allows us to incorporate multi-view depth information. In addition, we propose to use a truncated robust cost function which prevents considering inconsistent depth estimations. The photometric and depth-prediction measurements are integrated in a tightly-coupled optimization leading to a scale-aware monocular system which does not accumulate scale drift. We demonstrate the validity of our proposal evaluating it on the KITTI odometry dataset and comparing it with state-of-the-art monocular and stereo SLAM systems. Experiments show that our proposal largely outperforms classic monocular SLAM, being 5 to 9 times more precise, with an accuracy which is closer to that of stereo systems.
翻译:我们提出了一个基于深神经网络深度预测的直接单眼测量框架,与目前仅部分利用深度信息的方法相比,我们制定了一个新的深度预测残余方法,使我们能够纳入多视图深度信息;此外,我们提议使用一个松散的稳健成本功能,防止考虑不一致的深度估计;光度测量和深度预测测量结合到一个紧密结合的优化中,从而形成一个不积累比例漂移的有比例感的单眼系统;我们展示了我们在KITTI的odologic数据集上评价这一数据的建议的有效性,并将其与最新工艺单眼和立体SLAM系统进行比较。实验表明,我们的建议基本上优于典型的单眼SLMM系统,其精确度是5至9倍,接近立体系统的精确度。