In the last decade, numerous supervised deep learning approaches requiring large amounts of labeled data have been proposed for visual-inertial odometry (VIO) and depth map estimation. To overcome the data limitation, self-supervised learning has emerged as a promising alternative, exploiting constraints such as geometric and photometric consistency in the scene. In this study, we introduce a novel self-supervised deep learning-based VIO and depth map recovery approach (SelfVIO) using adversarial training and self-adaptive visual-inertial sensor fusion. SelfVIO learns to jointly estimate 6 degrees-of-freedom (6-DoF) ego-motion and a depth map of the scene from unlabeled monocular RGB image sequences and inertial measurement unit (IMU) readings. The proposed approach is able to perform VIO without the need for IMU intrinsic parameters and/or the extrinsic calibration between the IMU and the camera. estimation and single-view depth recovery network. We provide comprehensive quantitative and qualitative evaluations of the proposed framework comparing its performance with state-of-the-art VIO, VO, and visual simultaneous localization and mapping (VSLAM) approaches on the KITTI, EuRoC and Cityscapes datasets. Detailed comparisons prove that SelfVIO outperforms state-of-the-art VIO approaches in terms of pose estimation and depth recovery, making it a promising approach among existing methods in the literature.
翻译:在过去十年中,提出了许多需要大量贴标签数据的有监督的深层次学习方法,用于进行视觉-神经计量(VIO)和深度地图估计。为了克服数据限制,自我监督的学习已经成为一种有希望的替代方法,利用了现场几何和光度测量一致性等制约因素。在这项研究中,我们采用了一种新的由自我监督的深层次学习的VIO和深度地图恢复方法(自我监督的学习方法),使用对抗性培训和自我适应的视觉-神经传感器聚合。自我VIO学会学会从未标记的单层RGB图像序列和惯性测量单位的阅读中,共同估计6度自由度(6度-DoF)的自我感动和场景深度图。拟议的方法能够实施VIO,而不需要IMU的内在参数和/或摄影机的外部校准。估计和单一视野深度恢复网络。我们对拟议框架进行了全面的定量和定性评价,将它的业绩与其在VIO、Ro-SL VI 和视觉-VSL 的深度估算方法中,对VI-VI-VSL 和V-VS-SB SI-V-S-SB-SB-SB-SB-L-Simal-Simal-L-IV-IV-IV-IV-SB-SB-SB-SB-SU-SF-SF-I-S-S-S-S-I-SF-I-S-S-S-I-I-SB-I-I-I-I-I-SD-SD-SD-SD-SD-SB-SD-SD-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-SD-SD-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I