The total variation (TV) flow generates a scale-space representation of an image based on the TV functional. This gradient flow observes desirable features for images such as sharp edges and enables spectral, scale, and texture analysis. The standard numerical approach for TV flow requires solving multiple non-smooth optimisation problems. Even with state-of-the-art convex optimisation techniques, this is often prohibitively expensive and strongly motivates the use of alternative, faster approaches. Inspired by and extending the framework of physics-informed neural networks (PINNs), we propose the TVflowNET, a neural network approach to compute the solution of the TV flow given an initial image and a time instance. We significantly speed up the computation time by more than one order of magnitude and show that the TVflowNET approximates the TV flow solution with high fidelity. This is a preliminary report, more details are to follow.
翻译:总变异( TV) 流产生基于 TV 功能的图像的尺度- 空间表示。 这种梯度流可以观察到尖边缘等图像的可取性, 并且能够进行光谱、 比例和纹理分析。 电视流的标准数字方法需要解决多种非移动优化问题。 即使是最先进的 convex 优化技术, 这通常也非常昂贵, 并且强烈地激励使用替代的、 更快的方法。 在物理知情的神经网络( PINS) 框架的启发和扩展下, 我们提议了 TV 流网, 这是一种神经网络方法, 以初始图像和时间实例来计算电视流的解决方案 。 我们大大加快计算时间的量级, 并显示 TV 流网非常忠实地接近电视流的解决方案 。 这是一份初步报告, 需要遵循更多细节 。