Shadow removal from a single image is generally still an open problem. Most existing learning-based methods use supervised learning and require a large number of paired images (shadow and corresponding non-shadow images) for training. A recent unsupervised method, Mask-ShadowGAN, addresses this limitation. However, it requires a binary mask to represent shadow regions, making it inapplicable to soft shadows. To address the problem, in this paper, we propose an unsupervised domain-classifier guided shadow removal network, DC-ShadowNet. Specifically, we propose to integrate a shadow/shadow-free domain classifier into a generator and its discriminator, enabling them to focus on shadow regions. To train our network, we introduce novel losses based on physics-based shadow-free chromaticity, shadow-robust perceptual features, and boundary smoothness. Moreover, we show that our unsupervised network can be used for test-time training that further improves the results. Our experiments show that all these novel components allow our method to handle soft shadows, and also to perform better on hard shadows both quantitatively and qualitatively than the existing state-of-the-art shadow removal methods.
翻译:从单一图像中去除阴影一般仍然是一个尚未解决的问题。 大多数现有的基于学习的方法都使用监督的学习方法,并要求大量的配对图像(阴影和相应的非阴影图像)来进行培训。 最近一种不受监督的方法,Mask-ShadowGAN, 解决了这一限制。 但是,它需要一个二进制的面具来代表阴影区域,使其不适用于软阴影。为了解决这个问题,我们在本文件中提议建立一个不受监督的域级化引导的影子清除网络DC-ShadowNet。具体地说,我们提议将一个影子/阴影域分类器纳入一个生成器及其导师,使其能够关注阴影区域。为了培训我们的网络,我们引入了基于基于物理的无阴影染色性、阴影-紫外观特征和边界平滑的新的损失。此外,我们展示了我们的未经监督的网络可以用来测试时间培训,从而进一步改善结果。 我们的实验表明,所有这些新构件都允许我们处理软阴影的方法,以及更好地在硬阴影上进行质量上的清除。