This paper presents a fast lidar-inertial odometry (LIO) system that is robust to aggressive motion. To achieve robust tracking in aggressive motion scenes, we exploit the continuous scanning property of lidar to adaptively divide the full scan into multiple partial scans (named sub-frames) according to the motion intensity. And to avoid the degradation of sub-frames resulting from insufficient constraints, we propose a robust state estimation method based on a tightly-coupled iterated error state Kalman smoother (ESKS) framework. Furthermore, we propose a robocentric voxel map (RC-Vox) to improve the system's efficiency. The RC-Vox allows efficient maintenance of map points and k nearest neighbor (k-NN) queries by mapping local map points into a fixed-size, two-layer 3D array structure. Extensive experiments were conducted on 27 sequences from 4 public datasets and our own dataset. The results show that our system can achieve stable tracking in aggressive motion scenes that cannot be handled by other state-of-the-art methods, while our system can achieve competitive performance with these methods in general scenes. In terms of efficiency, the RC-Vox allows our system to achieve the fastest speed compared with the current advanced LIO systems.
翻译:本文展示了一个快速的利达- 内皮odis 系统,这个系统对攻击性运动非常有力。 为了在攻击性运动场景中实现强力跟踪, 我们利用利达连续扫描属性, 根据运动强度, 将全扫描按适应性地分为多个部分扫描( 名为子框架) ; 为了避免因限制不足而导致子框架退化, 我们提议了一个强力的州估算方法, 其依据是紧密相交的迭接误差状态的卡尔曼光滑动器( ESKS) 框架 。 此外, 我们提议了一个 Roboocentic voxel 地图( RC- Vox), 以提高系统的效率。 RC- Vox 允许高效地维护地图点和 k最近的邻居( k- NNN) 查询, 将本地地图点绘制成一个固定规模的双层 3D 阵列结构 。 我们从 4 个公共数据集和我们自己的数据集 进行了27个序列的广泛实验。 结果表明, 我们的系统可以在其他州级艺术方法无法处理的侵略性运动场景中实现稳定的跟踪, 我们的系统能够通过这些先进系统实现竞争性性运行。