Graph Convolutional Network (GCN) has been widely applied in transportation demand prediction due to its excellent ability to capture non-Euclidean spatial dependence among station-level or regional transportation demands. However, in most of the existing research, the graph convolution was implemented on a heuristically generated adjacency matrix, which could neither reflect the real spatial relationships of stations accurately, nor capture the multi-level spatial dependence of demands adaptively. To cope with the above problems, this paper provides a novel graph convolutional network for transportation demand prediction. Firstly, a novel graph convolution architecture is proposed, which has different adjacency matrices in different layers and all the adjacency matrices are self-learned during the training process. Secondly, a layer-wise coupling mechanism is provided, which associates the upper-level adjacency matrix with the lower-level one. It also reduces the scale of parameters in our model. Lastly, a unitary network is constructed to give the final prediction result by integrating the hidden spatial states with gated recurrent unit, which could capture the multi-level spatial dependence and temporal dynamics simultaneously. Experiments have been conducted on two real-world datasets, NYC Citi Bike and NYC Taxi, and the results demonstrate the superiority of our model over the state-of-the-art ones.


翻译:219. 为应对上述问题,本文件在运输需求预测中广泛应用了新型的图形革命网络(GCN),因为其极有能力在站一级或区域运输需求中捕捉非欧洲空间依赖性,然而,在大多数现有研究中,图形革命是在超常生成的相邻矩阵上实施的,既不能准确反映各站的实际空间关系,也不能准确反映需求适应性要求的多层次空间依赖性。为了应对上述问题,本文件提供了一个新的图形革命网络,用于运输需求预测。首先,提出了一个新的图形革命结构,在不同层次上具有不同的相邻矩阵,所有相邻矩阵在培训过程中都是自学的。第二,提供了一种分层混合机制,将高层相邻矩阵与较低层次的相连接。它还缩小了我们模型中的参数范围。最后,建立了一个统一网络,通过将隐藏的空间状态与封闭的经常单元整合,可以同时捕捉多层次的空间依赖性和时间动态。

12
下载
关闭预览

相关内容

最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
已删除
将门创投
9+阅读 · 2017年7月28日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
已删除
将门创投
9+阅读 · 2017年7月28日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员