We consider the allocation of $m$ balls into $n$ bins with incomplete information. In the classical Two-Choice process a ball first queries the load of two randomly chosen bins and is then placed in the least loaded bin. In our setting, each ball also samples two random bins but can only estimate a bin's load by sending binary queries of the form "Is the load at least the median?" or "Is the load at least 100?". For the lightly loaded case $m=O(n)$, Feldheim and Gurel-Gurevich (2021) showed that with one query it is possible to achieve a maximum load of $O(\sqrt{\log n/\log \log n})$, and posed the question whether a maximum load of $m/n+O(\sqrt{\log n/\log \log n})$ is possible for any $m = \Omega(n)$. In this work, we resolve this open problem by proving a lower bound of $m/n+\Omega( \sqrt{\log n})$ for a fixed $m=\Theta(n \sqrt{\log n})$, and a lower bound of $m/n+\Omega(\log n/\log \log n)$ for some $m$ depending on the used strategy. We complement this negative result by proving a positive result for multiple queries. In particular, we show that with only two binary queries per chosen bin, there is an oblivious strategy which ensures a maximum load of $m/n+O(\sqrt{\log n})$ for any $m \geq 1$. Further, for any number of $k = O(\log \log n)$ binary queries, the upper bound on the maximum load improves to $m/n + O(k(\log n)^{1/k})$ for any $m \geq 1$. Further, this result for $k$ queries implies (i) new bounds for the $(1+\beta)$-process introduced by Peres et al (2015), (ii) new bounds for the graphical balanced allocation process on dense expander graphs, and (iii) the bound of $m/n+O(\log \log n)$ on the maximum load achieved by the Two-Choice process, including the heavily loaded case $m=\Omega(n)$ derived by Berenbrink et al. (2006). One novel aspect of our proofs is the use of multiple super-exponential potential functions, which might be of use in future work.
翻译:我们考虑将美元球分配到有不完整信息的 $n bin 中。 在经典的 Two- Choice 进程中, 球首先询问两个随机选择的 bin 的负荷, 然后被放入最不装入的 bin 。 在我们的设置中, 每个球也抽样两个 bin 的 bin, 但只能通过发送“ 负荷至少是中位数吗” 或“ 装载量至少是100美元? ” 。 对于轻装入的 案件 $= O( n) 美元, Feldheim 和 Gurel- Gurevich (2021) 显示, 只要一个查询, 就可以实现 $( sqr) n\ log\ log n\ log n} 的最大负载, 并且问 $( list) 的最大负载量是否可能 $( = nqrq) 的 nqrum 。 对于新的 (n $ (n) 美元 (n) 和 m (n) load (我们的任何未解决的问题, 我们通过证明 $( 美元) 美元/ a ligro) com com 的计算 战略, ro) 或 a mas res res res res res res res res res res 的 res res res res res res res res res res res res res res resm resm resm resm resm resm resm res res resm 。