Given a matrix $A$ and vector $b$ with polynomial entries in $d$ real variables $\delta=(\delta_1,\ldots,\delta_d)$ we consider the following notion of feasibility: the pair $(A,b)$ is locally feasible if there exists an open neighborhood $U$ of $0$ such that for every $\delta\in U$ there exists $x$ satisfying $A(\delta)x\ge b(\delta)$ entry-wise. For $d=1$ we construct a polynomial time algorithm for deciding local feasibility. For $d \ge 2$ we show local feasibility is NP-hard. As an application (which was the primary motivation for this work) we give a computer-assisted proof of ergodicity of the following elementary 1D cellular automaton: given the current state $\eta_t \in \{0,1\}^{\mathbb{Z}}$ the next state $\eta_{t+1}(n)$ at each vertex $n\in \mathbb{Z}$ is obtained by $\eta_{t+1}(n)= \text{NAND}\big(\text{BSC}_\delta(\eta_t(n-1)), \text{BSC}_\delta(\eta_t(n))\big)$. Here the binary symmetric channel $\text{BSC}_\delta$ takes a bit as input and flips it with probability $\delta$ (and leaves it unchanged with probability $1-\delta$). We also consider the problem of broadcasting information on the 2D-grid of noisy binary-symmetric channels $\text{BSC}_\delta$, where each node may apply an arbitrary processing function to its input bits. We prove that there exists $\delta_0'>0$ such that for all noise levels $0<\delta<\delta_0'$ it is impossible to broadcast information for any processing function, as conjectured in Makur, Mossel, Polyanskiy (ISIT 2021).
翻译:基质 $A 美元 和 矢量 $ b 美元 美元 在 美元 实际变量 $0 美元 美元 美元 美元 实际变量 $0 delta= (\ delta_ 1,\ ldots,\ delta_d) 我们考虑以下的可行性概念: 如果存在一个开放的邻里 $ 20美元, 对应每美元 $0 delA 和 矢量 美元 美元, 满足 $0 delax b (\ delta) 。 对于 美元 =1 我们为确定本地可行性而构建一个多年度时间算法 。 对于 $dlta_ 1, 我们显示本地的可行性是硬的。 作为应用程序(这是这项工作的主要动机), 我们给以下基本 1D 手机自动图的电量值 可能存在 $teta\ t$ 美元 美元 美元 美元 美元 美元, 美元 = mathbbb 美元 。