We study exact algorithms for Euclidean TSP in $\mathbb{R}^d$. In the early 1990s algorithms with $n^{O(\sqrt{n})}$ running time were presented for the planar case, and some years later an algorithm with $n^{O(n^{1-1/d})}$ running time was presented for any $d\geq 2$. Despite significant interest in subexponential exact algorithms over the past decade, there has been no progress on Euclidean TSP, except for a lower bound stating that the problem admits no $2^{O(n^{1-1/d-\epsilon})}$ algorithm unless ETH fails. Up to constant factors in the exponent, we settle the complexity of Euclidean TSP by giving a $2^{O(n^{1-1/d})}$ algorithm and by showing that a $2^{o(n^{1-1/d})}$ algorithm does not exist unless ETH fails.
翻译:我们用$mathbb{R ⁇ d$对Euclidean TSP的精确算法进行了研究。在1990年代初期,用$O(sqrt{n}}}$O(美元运行时间)对Planar案提出了运行时间,在几年后,用$O(n ⁇ 1-1/d}}}}(美元运行时间)对任何美元(美元)都提出了运行时间。尽管过去10年来对亚化精确算法的兴趣很大,但Euclidean TSP没有进展,除了下限表示除非ETH失败,否则问题不会出现$2O(n ⁇ 1/d-epsilon}}(美元)的算法之外,除非ETH失败。在推算的不变因素下,我们用$2O(n ⁇ 1-1/d}(美元)来解决Euclidean TSP的复杂问题。我们用$(美元)算法表明,如果ETH不成功,2美元算法是不存在的。