This article presents a three-step framework for learning and solving partial differential equations (PDEs) using kernel methods. Given a training set consisting of pairs of noisy PDE solutions and source/boundary terms on a mesh, kernel smoothing is utilized to denoise the data and approximate derivatives of the solution. This information is then used in a kernel regression model to learn the algebraic form of the PDE. The learned PDE is then used within a kernel based solver to approximate the solution of the PDE with a new source/boundary term, thereby constituting an operator learning framework. Numerical experiments compare the method to state-of-the-art algorithms and demonstrate its competitive performance.
翻译:本文提出了一种使用核方法学习和解决偏微分方程(PDEs)的三步框架。给定一个训练集,其中包含网格上的噪声PDE解和源/边界项的对,利用核平滑来去除噪声并近似解的导数。然后,在核回归模型中利用这些信息来学习PDE的代数形式。已学习的PDE然后在基于核的求解器中使用,以近似具有新的源/边界项的PDE的解,从而构成算子学习框架。数值实验将该方法与最先进的算法进行比较,并展示其具有竞争力的性能。