算法与数据结构 ( Algorithms and data structures )包括算法分析( Analysis of algorithms ),算法( Algorithms ),数据结构( Data structures )以及计算几何( Computational geometry ) Golden Formula: Algorithms + Data Structures = Programs

VIP内容

这本教科书解释的概念和技术需要编写的程序,可以有效地处理大量的数据。面向项目和课堂测试,这本书提出了一些重要的算法,由例子支持,给计算机程序员面临的问题带来意义。计算复杂性的概念也被介绍,演示什么可以和不可以被有效地计算,以便程序员可以对他们使用的算法做出明智的判断。特点:包括介绍性和高级数据结构和算法的主题,与序言顺序为那些各自的课程在前言中提供; 提供每个章节的学习目标、复习问题和编程练习,以及大量的说明性例子; 在相关网站上提供可下载的程序和补充文件,以及作者提供的讲师资料; 为那些来自不同的语言背景的人呈现Python的初级读本。

成为VIP会员查看完整内容
0
105

最新内容

We study the problem of approximating the eigenspectrum of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with bounded entries (i.e., $\|A\|_{\infty} \leq 1$). We present a simple sublinear time algorithm that approximates all eigenvalues of $A$ up to additive error $\pm \epsilon n$ using those of a randomly sampled $\tilde{O}(\frac{1}{\epsilon^4}) \times \tilde O(\frac{1}{\epsilon^4})$ principal submatrix. Our result can be viewed as a concentration bound on the full eigenspectrum of a random principal submatrix. It significantly extends existing work which shows concentration of just the spectral norm [Tro08]. It also extends work on sublinear time algorithms for testing the presence of large negative eigenvalues in the spectrum [BCJ20]. To complement our theoretical results, we provide numerical simulations, which demonstrate the effectiveness of our algorithm in approximating the eigenvalues of a wide range of matrices.

0
0
下载
预览

最新论文

We study the problem of approximating the eigenspectrum of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with bounded entries (i.e., $\|A\|_{\infty} \leq 1$). We present a simple sublinear time algorithm that approximates all eigenvalues of $A$ up to additive error $\pm \epsilon n$ using those of a randomly sampled $\tilde{O}(\frac{1}{\epsilon^4}) \times \tilde O(\frac{1}{\epsilon^4})$ principal submatrix. Our result can be viewed as a concentration bound on the full eigenspectrum of a random principal submatrix. It significantly extends existing work which shows concentration of just the spectral norm [Tro08]. It also extends work on sublinear time algorithms for testing the presence of large negative eigenvalues in the spectrum [BCJ20]. To complement our theoretical results, we provide numerical simulations, which demonstrate the effectiveness of our algorithm in approximating the eigenvalues of a wide range of matrices.

0
0
下载
预览
父主题
子主题
Top