Accurate localization is a core component of a robot's navigation system. To this end, global navigation satellite systems (GNSS) can provide absolute measurements outdoors and, therefore, eliminate long-term drift. However, fusing GNSS data with other sensor data is not trivial, especially when a robot moves between areas with and without sky view. We propose a robust approach that tightly fuses raw GNSS receiver data with inertial measurements and, optionally, lidar observations for precise and smooth mobile robot localization. A factor graph with two types of GNSS factors is proposed. First, factors based on pseudoranges, which allow for global localization on Earth. Second, factors based on carrier phases, which enable highly accurate relative localization, which is useful when other sensing modalities are challenged. Unlike traditional differential GNSS, this approach does not require a connection to a base station. On a public urban driving dataset, our approach achieves accuracy comparable to a state-of-the-art algorithm that fuses visual inertial odometry with GNSS data -- despite our approach not using the camera, just inertial and GNSS data. We also demonstrate the robustness of our approach using data from a car and a quadruped robot moving in environments with little sky visibility, such as a forest. The accuracy in the global Earth frame is still 1-2 m, while the estimated trajectories are discontinuity-free and smooth. We also show how lidar measurements can be tightly integrated. We believe this is the first system that fuses raw GNSS observations (as opposed to fixes) with lidar in a factor graph.
翻译:精确的本地化是机器人导航系统的核心组成部分。 为此,全球导航卫星系统(GNSS)可以提供绝对的室外测量,从而消除长期漂移。 然而,将全球导航卫星系统数据与其他传感器数据混在一起并非微不足道,特别是当机器人在有天空和没有天空的区域内移动时。 我们提出一种强有力的方法,将原全球导航卫星系统接收数据与惯性测量和可选的利达尔观测连接起来,以精确和平稳的移动机器人本地化。 提出了含有两种类型的全球导航卫星系统因素的系数图。 首先,基于假星系的因素,允许在地球上实现全球原始本地化。 其次,基于承运人阶段的因素,使得能够非常精确相对本地化,在其他遥感模式受到挑战时,这是有用的。 不同于传统的差异性全球导航卫星系统,这种方法不需要连接一个基地站。 在公共的城市驱动数据集中,我们的方法的精确度可与将视觉惯性惯性惯性测量值与全球导航卫星系统数据连接起来的状态算法相近。 尽管我们的方法没有使用相机,只是惯性,全球导航卫星系统和全球导航卫星系统的精确性数据。 我们还以精确度来展示我们的方法的稳健健性,同时使用从一个稳定的轨道框架中,而用一个稳定的系统显示,从一个稳定的系统显示一个稳定的系统,而以稳定的精确的精确性框架显示,在一种木质平层框架中,而我们在一个稳定的模型中,在一种方向上显示一种稳定的数据。</s>