The presented methodology for testing the goodness-of-fit of an Autoregressive Hilbertian model (ARH(1) model) provides an infinite-dimensional formulation of the approach proposed in Koul and Stute (1999), based on empirical process marked by residuals. Applying a central and functional central limit result for Hilbert-valued martingale difference sequences, the asymptotic behavior of the formulated H-valued empirical process, also indexed by H, is obtained under the null hypothesis. The limiting process is H-valued generalized (i.e., indexed by H) Wiener process, leading to an asymptotically distribution free test. Consistency is also analyzed. The case of misspecified autocorrelation operator of the ARH(1) process is addressed as well. Beyond the Euclidean setting, this approach allows to implement goodness of fit testing in the context of manifold and spherical functional autoregressive processes.
翻译:----
对 Hilbert 自回归模型的拟合优度检验
Translated abstract:
本文提出了一种对自回归 Hilbert 模型 (ARH(1) 模型) 拟合优度进行检验的方法,并在 Koul 和 Stute (1999) 提出的基于残差经验过程的方法的基础上给出了无限维形式。通过应用 Hilbert 值鞅差距数列的中心限制和功能中心极限定理,得到了零假设下的 Hilbert-值经验过程的渐近行为。渐近分布无关的检验利用了 H 值广义 (即由 H 索引) 维纳过程。文中还分析了一阶自回归过程的自相关算子被错误指定的情况。除了欧几里得空间之外,这种方法还允许在流形和球形函数自回归过程的背景下实现拟合优度检验。