We address the problem of fitting 3D human models to 3D scans of dressed humans. Classical methods optimize both the data-to-model correspondences and the human model parameters (pose and shape), but are reliable only when initialized close to the solution. Some methods initialize the optimization based on fully supervised correspondence predictors, which is not differentiable end-to-end, and can only process a single scan at a time. Our main contribution is LoopReg, an end-to-end learning framework to register a corpus of scans to a common 3D human model. The key idea is to create a self-supervised loop. A backward map, parameterized by a Neural Network, predicts the correspondence from every scan point to the surface of the human model. A forward map, parameterized by a human model, transforms the corresponding points back to the scan based on the model parameters (pose and shape), thus closing the loop. Formulating this closed loop is not straightforward because it is not trivial to force the output of the NN to be on the surface of the human model - outside this surface the human model is not even defined. To this end, we propose two key innovations. First, we define the canonical surface implicitly as the zero level set of a distance field in R3, which in contrast to morecommon UV parameterizations, does not require cutting the surface, does not have discontinuities, and does not induce distortion. Second, we diffuse the human model to the 3D domain R3. This allows to map the NN predictions forward,even when they slightly deviate from the zero level set. Results demonstrate that we can train LoopRegmainly self-supervised - following a supervised warm-start, the model becomes increasingly more accurate as additional unlabelled raw scans are processed. Our code and pre-trained models can be downloaded for research.


翻译:我们的主要贡献是将3D人类模型安装为3D穿衣人扫描仪。 经典方法优化了数据到模型的通信和人类模型参数( 和形状), 但只有在接近解决方案的初始化时才可靠。 有些方法在完全监督的通信预测器上初始化优化, 这是无法区分的端对端, 并且只能一次处理一次扫描。 我们的主要贡献是 LoopReg, 一个用于登记对一个共同的 3D 人类模型进行分流扫描的从端到端的学习框架。 关键思想是创建一个自我监督的循环。 由神经网络参数化的后向域映射图, 从每个扫描点到人类模型的表面预测。 一个前方的地图, 由人类模型参数参数参数( 和形状) 将相应的点转换到前端的扫描, 从而可以关闭循环。 建立这个封闭的循环并不简单, 因为它们不会轻率地将 NN 的输出放在人类模型表面上 - 而不是在表面进行自我监督的循环。 由神经网络化的后向前向前的轨道显示一个方向, 我们所设定的轨道, 我们所设定的轨道上的一个方向, 。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
图像分割方法综述
专知会员服务
54+阅读 · 2020年11月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员