In this paper, we present DIREG3D, a holistic framework for 3D Hand Tracking. The proposed framework is capable of utilizing camera intrinsic parameters, 3D geometry, intermediate 2D cues, and visual information to regress parameters for accurately representing a Hand Mesh model. Our experiments show that information like the size of the 2D hand, its distance from the optical center, and radial distortion is useful for deriving highly reliable 3D poses in camera space from just monocular information. Furthermore, we extend these results to a multi-view camera setup by fusing features from different viewpoints.
翻译:在本文中,我们展示了DIREG3D(DIREG3D),这是一个三维手跟踪的整体框架。 拟议的框架能够利用相机内在参数、 3D几何、 中间二维提示和视觉信息进行回归参数, 以准确代表一个手网模型。 我们的实验显示, 2D 手的大小、 与光学中心的距离 、 以及辐射扭曲等信息, 有助于从镜头空间中从单眼信息中提取非常可靠的三维成像。 此外, 我们将这些结果推广到一个多视图相机, 通过从不同角度进行显示功能来设置。