This article shows how coupled Markov chains that meet exactly after a random number of iterations can be used to generate unbiased estimators of the solutions of the Poisson equation. We establish connections to recently-proposed unbiased estimators of Markov chain equilibrium expectations. We further employ the proposed estimators of solutions of the Poisson equation to construct unbiased estimators of the asymptotic variance of Markov chain ergodic averages, involving a random but finite computing time. We formally study the proposed methods under realistic assumptions on the meeting times of the coupled chains and on the existence of moments of test functions under the target distribution. We describe experiments in toy examples such as the autoregressive model, and in more challenging settings.
翻译:本篇文章展示了在随机迭代次数之后完全满足的Markov链条是如何相互配合的,可以用来产生对Poisson方程式解决方案的公正估计。 我们与最近提出的Markov链条均衡期望的公正估计者建立了联系。 我们还使用了Poisson方程式解决方案的拟议估计者,以构建对Markov链条ergodic 平均值无症状差异的公正估计者,其中涉及随机但有限的计算时间。 我们正式研究了在对连接链的开会时间和目标分布下测试功能时刻的现实假设下提出的方法。 我们描述了像自动递减模型这样的微小例子和更具挑战性的环境中的实验。