We consider dynamical low-rank approximation (DLRA) for the numerical simulation of Vlasov-Poisson equations based on separation of space and velocity variables, as proposed in several recent works. The standard approach for the time integration in the DLRA model uses a splitting of the tangent space projector for the low-rank manifold according to the separated variables. It can also be modified to allow for rank-adaptivity. A less studied aspect is the incorporation of boundary conditions in the DLRA model. We propose a variational formulation of the projector splitting which allows to handle inflow boundary conditions on spatial domains with piecewise linear boundary. Numerical experiments demonstrate the principle feasibility of this approach.
翻译:我们考虑的是Vlasov-Poisson等式数字模拟的动态低空近似值(DLAC),该方程式是根据最近几项工程中的建议,根据空间和速度变量的分离进行数字模拟的。DLRA模型的时间整合标准方法根据分解变量对低空方块使用相切的空间投影器进行分割,还可以加以修改以允许等级适配性。研究较少的一个方面是将边界条件纳入DLRA模型。我们建议对投影器分离作变式的配方,以便能够处理有片断线边界的空间域的内向边界条件。数字实验显示了这一方法的原则可行性。</s>