Feature-based visual simultaneous localization and mapping (SLAM) methods only estimate the depth of extracted features, generating a sparse depth map. To solve this sparsity problem, depth completion tasks that estimate a dense depth from a sparse depth have gained significant importance in robotic applications like exploration. Existing methodologies that use sparse depth from visual SLAM mainly employ point features. However, point features have limitations in preserving structural regularities owing to texture-less environments and sparsity problems. To deal with these issues, we perform depth completion with visual SLAM using line features, which can better contain structural regularities than point features. The proposed methodology creates a convex hull region by performing constrained Delaunay triangulation with depth interpolation using line features. However, the generated depth includes low-frequency information and is discontinuous at the convex hull boundary. Therefore, we propose a mesh depth refinement (MDR) module to address this problem. The MDR module effectively transfers the high-frequency details of an input image to the interpolated depth and plays a vital role in bridging the conventional and deep learning-based approaches. The Struct-MDC outperforms other state-of-the-art algorithms on public and our custom datasets, and even outperforms supervised methodologies for some metrics. In addition, the effectiveness of the proposed MDR module is verified by a rigorous ablation study.
翻译:以视觉为基础的视觉同步本地化和绘图(SLAM)方法只能估计提取的特征的深度,产生一个稀有的深度地图。为了解决这一宽度问题,在探索等机器人应用中,从稀少的深度估计密度的深度的深度完成任务变得非常重要。现有方法主要使用视觉SLAM的深度,主要使用点特征。然而,由于无质环境和宽度问题,点特征在保持结构规律性方面有局限性。为了处理这些问题,我们使用直观的SLAM(SLAM)方法,用直观的特征进行深度完成深度完成,这比点特征更能包含结构性的规律性。拟议方法通过使用线性特征进行有节制的Delaunary三角和深度的深度内插,从而形成一个凝固的骨架区域。然而,生成的深度包括低频信息,在直观的SLMDRMC船体边界上不中断。因此,我们建议用微深度的精度改进模块来解决这个问题。MDR模块有效地将输入图像的高频细节传送到内深层,并在连接常规和深深层次的基于学习的方法方面发挥着关键的作用。 Struut-MDRC-C 将一个用于对公众的严格的模型的模型进行校外校外的校外校外校外的校外的校外校外校外的校外校外校外校外校外校外校外校外校外的校外校外校外校外算。