Event cameras respond to brightness changes in the scene asynchronously and independently for every pixel. Due to the properties, these cameras have distinct features: high dynamic range (HDR), high temporal resolution, and low power consumption. However, the results of event cameras should be processed into an alternative representation for computer vision tasks. Also, they are usually noisy and cause poor performance in areas with few events. In recent years, numerous researchers have attempted to reconstruct videos from events. However, they do not provide good quality videos due to a lack of temporal information from irregular and discontinuous data. To overcome these difficulties, we introduce an E2V-SDE whose dynamics are governed in a latent space by Stochastic differential equations (SDE). Therefore, E2V-SDE can rapidly reconstruct images at arbitrary time steps and make realistic predictions on unseen data. In addition, we successfully adopted a variety of image composition techniques for improving image clarity and temporal consistency. By conducting extensive experiments on simulated and real-scene datasets, we verify that our model outperforms state-of-the-art approaches under various video reconstruction settings. In terms of image quality, the LPIPS score improves by up to 12% and the reconstruction speed is 87% higher than that of ET-Net.
翻译:事件摄像头对每个像素的亮度变化反应不时和独立。 由于这些特性, 这些摄像头具有不同的特点: 高动态范围、 高时间分辨率和低耗电量。 但是, 事件摄像头的结果应该被处理成计算机视觉任务的替代代表物。 此外, 它们通常很吵, 在少有事件的地区造成性能差。 近年来, 许多研究人员试图从事件中重建视频。 但是, 由于缺乏来自不定期和不连续的数据的时间信息, 它们无法提供高质量的视频。 为了克服这些困难, 我们引入了一种E2V- SDE, 其动态在隐性空间受斯托切分异方程式( SDE) 的调节。 因此, E2V- SDE 可以在任意的时间步骤中快速重建图像, 并对不可见数据作出现实的预测。 此外, 我们成功地采用了各种图像构成技术来提高图像清晰度和时间一致性。 通过在模拟和真实的数据集中进行广泛的实验, 我们核查我们的模型在各种视频重建环境中的艺术状态方法是否优于各种图像重建环境下。 因此, LPIPS 12 的评分比 提高图像质量, LPIS 12 和速度。