Neural rendering can be used to reconstruct implicit representations of shapes without 3D supervision. However, current neural surface reconstruction methods have difficulty learning high-frequency details of shapes, so that the reconstructed shapes are often oversmoothed. We propose a novel method to improve the quality of surface reconstruction in neural rendering. We follow recent work to model surfaces as signed distance fields. First, we offer a derivation to analyze the relationship between the signed distance function, the volume density, the transparency function, and the weighting function used in the volume rendering equation. Second, we observe that attempting to jointly encode high-frequency and low frequency components in a single signed distance function leads to unstable optimization. We propose to decompose the signed distance function in a base function and a displacement function together with a coarse-to-fine strategy to gradually increase the high-frequency details. Finally, we propose to use an adaptive strategy that enables the optimization to focus on improving certain regions near the surface where the signed distance fields have artifacts. Our qualitative and quantitative results show that our method can reconstruct high-frequency surface details and obtain better surface reconstruction quality than the current state of the art. Code will be released at https://github.com/yiqun-wang/HFS.


翻译:然而,当前的神经表面重建方法很难了解高频和低频元件的形状细节,因此,重建后的形状往往会过于松动。我们提出了一种新方法,以提高神经构造中表面重建的质量。我们跟踪最近的工作,将表面建模做为已签字的距离字段。首先,我们提供一种衍生法,分析已签字的距离功能、体积密度、透明度功能和体积转换方程式所使用的加权功能之间的关系。第二,我们观察到,试图在一个已签字的距离函数中联合编码高频和低频元件,导致不稳定的优化。我们提议将已签字的距离函数解密,并结合粗到粗线的战略来逐步增加高频细节。最后,我们提议采用适应性战略,使优化能够侧重于改进已签字的距离字段有文物的地表附近某些区域。我们的定性和定量结果显示,我们的方法可以重建高频地表细节,并获得比目前水平/Rong/QRong系统更好的地表重建质量。我们提议,我们将在一个基/RongS/RongSDFRD将释放出来。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员