项目名称: 量子点红外探测器材料及器件物理研究

项目编号: No.61474106

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 马文全

作者单位: 中国科学院半导体研究所

项目金额: 90万元

中文摘要: 红外探测器在民用与国家安全领域有非常重要的意义,因此好性能的红外探测器尤其是长波及甚长波红外探测器国外对我国是严格禁运的。本项目以III-V族材料为基础,开展半导体量子点红外探测器(quantum dot infrared photodetector QDIP)相关的物理、材料生长及器件制备的研究,力争使得器件既能在不制作表面光栅的情况下工作,同时探索提高器件性能的物理机制,弥补量子阱红外探测器不能在正入射下工作和最佳工作温度低的缺点。本项目主要研究InAs及GaSb高均匀性量子点探测器材料的制备技术;研究控制量子点的形状,增强横向量子限制效应,来提高垂直入射下的子带吸收效率;研究通过控制量子点的大小、形状、组分以及应变状态来控制量子点中子带跃迁的探测波长;提出利用隧穿结构来降低暗电流、提高载流子寿命的新型器件结构,从而提高长波及甚长波红外探测器的器件性能。

中文关键词: 量子点;红外探测器;分子束外延

英文摘要: Infrared photodetectors are of great importance in the civil and military fields. Thus, high-performance infrared photodetectors, especiall thoese working in the long and the very long wavelength ranges,are prohibited from selling to China by the west countries. This application intends to investigate the physics, material growth and device fabrication of the quantum dot infrared photodetectors (QDIPs) based on III-V materials. The purpose is to investigate the physics machanism of enhancing the device performance witout fabricating the surface gratings and to overcome the drawbacks of the low working tempearture and no absorption under normal incidence irraduation of quantum well infrared photodetector. The studies of this application empass the material growth of InAs and GaSb quantum dots by controlling the dot shape to enhance the lateral quantum confinement and consequently to increase the intersubband absorption efficiency under normal incidence irradiation. We will study how to control the detection wavelength of QDIP by controlling the dot size, shape, composition, and the strain status. We will also investigate new device structures that may increase the carrier lifetime to enhance the performance of long and very long wavelength QDIP and will make use of the tunneling structure to decrease the dark current.

英文关键词: quantum dot;infrared photodetector;molecular beam epitaxy

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
21+阅读 · 2020年9月14日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2021年3月10日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
21+阅读 · 2020年9月14日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员