This paper presents a method for controlling the prosody at the phoneme level in an autoregressive attention-based text-to-speech system. Instead of learning latent prosodic features with a variational framework as is commonly done, we directly extract phoneme-level F0 and duration features from the speech data in the training set. Each prosodic feature is discretized using unsupervised clustering in order to produce a sequence of prosodic labels for each utterance. This sequence is used in parallel to the phoneme sequence in order to condition the decoder with the utilization of a prosodic encoder and a corresponding attention module. Experimental results show that the proposed method retains the high quality of generated speech, while allowing phoneme-level control of F0 and duration. By replacing the F0 cluster centroids with musical notes, the model can also provide control over the note and octave within the range of the speaker.
翻译:本文介绍了一种在自动递减关注文本到语音系统中在电话上控制代理的方法。 我们不是像通常那样通过变异框架学习潜在的预想特征,而是直接从培训组的语音数据中提取电话F0级和持续时间特征。 每种预想特征使用未经监督的组合进行分解, 以便产生每个发音的分解标签序列。 此序列与电话序列同时使用, 以便让解码器使用一个 prosodic 编码器和相应的关注模块。 实验结果显示, 拟议的方法保留了生成的语音的高质量, 同时允许对F0和持续时间进行电话- 级别控制。 通过用音乐笔替换 F0 集圆球, 该模型还可以在发言者范围内对笔记和八字进行控制。