Although end-to-end neural text-to-speech (TTS) methods (such as Tacotron2) are proposed and achieve state-of-the-art performance, they still suffer from two problems: 1) low efficiency during training and inference; 2) hard to model long dependency using current recurrent neural networks (RNNs). Inspired by the success of Transformer network in neural machine translation (NMT), in this paper, we introduce and adapt the multi-head attention mechanism to replace the RNN structures and also the original attention mechanism in Tacotron2. With the help of multi-head self-attention, the hidden states in the encoder and decoder are constructed in parallel, which improves the training efficiency. Meanwhile, any two inputs at different times are connected directly by self-attention mechanism, which solves the long range dependency problem effectively. Using phoneme sequences as input, our Transformer TTS network generates mel spectrograms, followed by a WaveNet vocoder to output the final audio results. Experiments are conducted to test the efficiency and performance of our new network. For the efficiency, our Transformer TTS network can speed up the training about 4.25 times faster compared with Tacotron2. For the performance, rigorous human tests show that our proposed model achieves state-of-the-art performance (outperforms Tacotron2 with a gap of 0.048) and is very close to human quality (4.39 vs 4.44 in MOS).


翻译:虽然提出了端到端神经文本到语音(TTS)方法(如Tacotron2),并实现了最新性能,但它们仍面临两个问题:(1) 培训和推断过程中效率低;(2) 很难用当前经常性神经网络(RNNS)模拟长期依赖性能。受神经机器翻译(NMT)中变压器网络的成功启发,我们在本文件中引入并调整多头关注机制,以取代RNN结构以及Tacotron的原始关注机制。2. 在多头自知的帮助下,在塔克坦和解码器中隐藏的状态是平行建造的,提高了培训效率。同时,在不同时间的任何两种投入都直接由自控机制连接,这可以有效解决远程依赖性问题。使用电话序列,我们的TTTS网络生成中线谱谱图,然后用波网电码输出最后音频结果。在多头盘中进行实验以测试我们新的网络的效率和性能。4.39 质量和解码的隐藏状态将测试我们新的网络的速率和性能测试。

5
下载
关闭预览

相关内容

语音合成(Speech Synthesis),也称为文语转换(Text-to-Speech, TTS,它是将任意的输入文本转换成自然流畅的语音输出。语音合成涉及到人工智能、心理学、声学、语言学、数字信号处理、计算机科学等多个学科技术,是信息处理领域中的一项前沿技术。 随着计算机技术的不断提高,语音合成技术从早期的共振峰合成,逐步发展为波形拼接合成和统计参数语音合成,再发展到混合语音合成;合成语音的质量、自然度已经得到明显提高,基本能满足一些特定场合的应用需求。目前,语音合成技术在银行、医院等的信息播报系统、汽车导航系统、自动应答呼叫中心等都有广泛应用,取得了巨大的经济效益。 另外,随着智能手机、MP3、PDA 等与我们生活密切相关的媒介的大量涌现,语音合成的应用也在逐渐向娱乐、语音教学、康复治疗等领域深入。可以说语音合成正在影响着人们生活的方方面面。
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
111+阅读 · 2019年11月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
6+阅读 · 2020年4月14日
Arxiv
6+阅读 · 2019年7月11日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
3+阅读 · 2018年11月13日
VIP会员
Top
微信扫码咨询专知VIP会员