Cancer of the brain is deadly and requires careful surgical segmentation. The brain tumors were segmented using U-Net using a Convolutional Neural Network (CNN). When looking for overlaps of necrotic, edematous, growing, and healthy tissue, it might be hard to get relevant information from the images. The 2D U-Net network was improved and trained with the BraTS datasets to find these four areas. U-Net can set up many encoder and decoder routes that can be used to get information from images that can be used in different ways. To reduce computational time, we use image segmentation to exclude insignificant background details. Experiments on the BraTS datasets show that our proposed model for segmenting brain tumors from MRI (MRI) works well. In this study, we demonstrate that the BraTS datasets for 2017, 2018, 2019, and 2020 do not significantly differ from the BraTS 2019 dataset's attained dice scores of 0.8717 (necrotic), 0.9506 (edema), and 0.9427 (enhancing).
翻译:脑癌是致命的,需要仔细的外科分解。 脑肿瘤使用U- Net 使用进化神经网络(CNN)进行分解。 在寻找坏死、 电磁、 生长和健康组织重叠时, 很难从图像中获取相关信息。 2D U- Net 网络经过改进和培训, 与 BRATS 数据集可以找到这四个区域。 U- Net 可以设置许多编码器和解码器路径, 用来从可不同方式使用的图像中获取信息。 为了减少计算时间, 我们使用图像分解来排除无关紧要的背景细节。 BRATS 数据集的实验显示, 我们提议的MRI( MRI) 脑肿瘤分解模型效果良好。 在这项研究中, 我们证明2017、 2018、 2019 和 2020 的 BRATS 数据集与 BRATS 2019 的 dice 得分数( 0.8717 ( necrotic)、 0. 9506 (edema) ) 和 0. 9427 (加强) 。