Social networking sites, blogs, and online articles are instant sources of news for internet users globally. However, in the absence of strict regulations mandating the genuineness of every text on social media, it is probable that some of these texts are fake news or rumours. Their deceptive nature and ability to propagate instantly can have an adverse effect on society. This necessitates the need for more effective detection of fake news and rumours on the web. In this work, we annotate four fake news detection and rumour detection datasets with their emotion class labels using transfer learning. We show the correlation between the legitimacy of a text with its intrinsic emotion for fake news and rumour detection, and prove that even within the same emotion class, fake and real news are often represented differently, which can be used for improved feature extraction. Based on this, we propose a multi-task framework for fake news and rumour detection, predicting both the emotion and legitimacy of the text. We train a variety of deep learning models in single-task and multi-task settings for a more comprehensive comparison. We further analyze the performance of our multi-task approach for fake news detection in cross-domain settings to verify its efficacy for better generalization across datasets, and to verify that emotions act as a domain-independent feature. Experimental results verify that our multi-task models consistently outperform their single-task counterparts in terms of accuracy, precision, recall, and F1 score, both for in-domain and cross-domain settings. We also qualitatively analyze the difference in performance in single-task and multi-task learning models.


翻译:社交网络网站、博客和在线文章是全球互联网用户的即时新闻来源。然而,由于缺乏严格规定,要求社交媒体上每条文字真实真实性的规定,有些文字很可能是假新闻或谣言。 它们的欺骗性性质和即时传播能力可能对社会产生不利影响。 这就需要更有效地检测网络上的假新闻和谣言。 在这项工作中,我们通过传输学习,用情感类标签来说明四个假新闻探测和谣言检测数据集。 我们展示了文本及其内在情感感官之间在虚假新闻和谣言检测方面的合法性的相互关系,并证明即使在同一情感类中,虚假和真实的新闻也往往有不同的表现形式,可以用来改进特征提取。 基于这一点,我们提议了一个多任务框架,用于假新闻和谣言检测,预测文本的情绪和合法性。 我们用单任务和多任务类标签设置来培训各种深层次学习模型,以便进行更全面的比较。 我们进一步分析了我们多任务模式的性能,用于在虚拟新闻准确性检测中进行更精确性分析, 并用不断的准确性分析其真实性, 校正性地校正的模型校正, 校正。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
20+阅读 · 2020年6月8日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
20+阅读 · 2020年6月8日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员