Source-free domain adaptation (SFDA) aims to transfer knowledge learned from a source domain to an unlabeled target domain, where the source data is unavailable during adaptation. Existing approaches for SFDA focus on self-training usually including well-established entropy minimization techniques. One of the main challenges in SFDA is to reduce accumulation of errors caused by domain misalignment. A recent strategy successfully managed to reduce error accumulation by pseudo-labeling the target samples based on class-wise prototypes (centroids) generated by their clustering in the representation space. However, this strategy also creates cases for which the cross-entropy of a pseudo-label and the minimum entropy have a conflict in their objectives. We call this conflict the centroid-hypothesis conflict. We propose to reconcile this conflict by aligning the entropy minimization objective with that of the pseudo labels' cross entropy. We demonstrate the effectiveness of aligning the two loss objectives on three domain adaptation datasets. In addition, we provide state-of-the-art results using up-to-date architectures also showing the consistency of our method across these architectures.
翻译:无源域适应(SFDA)旨在将从源域到没有标签的目标域的知识转让给没有源数据的目标域,适应期间没有源数据。SFDA的现有办法侧重于自我培训,通常包括成熟的最小化技术。SFDA的主要挑战之一是减少因域错配造成的错误积累。最近的一项战略成功地通过假标签方式减少目标样品的错误积累,这些样品是以其在代表空间的分组产生的类比原型(中心机器人)为基础的。然而,这一战略也造成了伪标签和最小的酶的交叉性在它们的目标中存在冲突的情况。我们称这一冲突为丙醇-假冒冲突。我们提议通过将最小化的酶目标与伪标签的交叉酶酶连接起来来调和这一冲突。我们展示了在三个域适应数据集上调整两个损失目标的有效性。此外,我们提供最新结果,使用最新结构也表明我们的方法在这些结构中的一致性。