In this paper, we introduce the \emph{interval query problem} on cube-free median graphs. Let $G$ be a cube-free median graph and $\mathcal{S}$ be a commutative semigroup. For each vertex $v$ in $G$, we are given an element $p(v)$ in $\mathcal{S}$. For each query, we are given two vertices $u,v$ in $G$ and asked to calculate the sum of $p(z)$ over all vertices $z$ belonging to a $u-v$ shortest path. This is a common generalization of range query problems on trees and grids. In this paper, we provide an algorithm to answer each interval query in $O(\log^2 n)$ time. The required data structure is constructed in $O(n\log^3 n)$ time and $O(n\log^2 n)$ space. To obtain our algorithm, we introduce a new technique, named the \emph{stairs decomposition}, to decompose an interval of cube-free median graphs into simpler substructures.
翻译:在本文中, 我们在无立方体中位图中引入了 \ emph{ interval 问问问问问 。 让 $G$ 成为无立方中位图, $\ mathcal{ S} 美元是一个通度半组 。 对于每个顶点 $G$ 美元, 我们得到一个元素 p( v) $ $ mathcal{ S} 美元 。 对于每个查询, 我们得到两个 $u, v $ (z) 美元, 并被要求计算属于 $u- v美元 最短路径的所有顶点的 $p( z) $ 。 这是对树和网格上范围查询问题的常见化概括 。 在本文中, 我们提供一种算法, 以$O( log_ 2 n) 时间回答每个间隔查询。 所需的数据结构以 $O( n) 时间和 $O( n) 时间和 $O( log_ 2 n) 空间构建。 要获取我们的算算算算算, 我们引入了一个新的技术,, 名为 emph{stairar2 n) mairs decomstationsmatistrations。