This extensive revision of my paper "Description of an $O(\text{poly}(n))$ Algorithm for NP-Complete Combinatorial Problems" will dramatically simplify the content of the original paper by solving subset-sum instead of $3$-SAT. I will first define the "product-derivative" method which will be used to generate a system of equations for solving unknown polynomial coefficients. Then I will describe the "Dragonfly" algorithm usable to solve subset-sum in $O(n^{16}\log(n))$ which is itself composed of a set of symbolic algebra steps on monic polynomials to convert a subset, $S_T$, of a set of positive integers, $S$, with a given target sum, $T$ into a polynomial with roots corresponding to the elements of $S_T$.
翻译:对我的论文“用于NP-Complite Compatime Conputional Issues的美元(text{poly}(n))”进行的广泛修改将大大简化原始文件的内容,解决子数和(而不是$-SAT),从而大大简化原始文件的内容。我首先将定义“产品衍生”方法,该方法将用来生成一个用于解决未知多元系数的方程系统。然后我将描述用于解决$O(n ⁇ 16 ⁇ log(n))子数的“龙蝇”算法,该算法本身由一套单数多义数上的象征性代数步骤组成,将一组正正数的子数($_T$)转换成一个子数($_T$)的正数整数($S$),并给定一个目标金额,即$T$($)转化为根根与$S_T$($)成根的多元数。