In this paper, we propose a class of finite alphabet iterative decoder (FAID), called mutual information-maximizing quantized belief propagation (MIM-QBP) decoder, for decoding regular low-density parity-check (LDPC) codes. Our decoder follows the reconstruction-calculation-quantization (RCQ) decoding architecture that is widely used in FAIDs. We present the first complete and systematic design framework for the RCQ parameters, and prove that our design with sufficient precision at node update is able to maximize the mutual information between coded bits and exchanged messages. Simulation results show that the MIM-QBP decoder can always considerably outperform the state-of-the-art mutual information-maximizing FAIDs that adopt two-input single-output lookup tables for decoding. Furthermore, with only 3 bits being used for each exchanged message, the MIM-QBP decoder can outperform the floating-point belief propagation decoder at the high signal-to-noise ratio regions when testing on high-rate LDPC codes with a maximum of 10 and 30 iterations.
翻译:在本文中,我们建议使用一组固定的字母迭代解码器(FAID),称为相互信息最大化的量化信仰传播(MIM-QBP)解码器(MIM-QBP)解码器,用于解码常规的低密度对等检查(LDPC)代码。我们的解码器遵循FAIDs广泛使用的重建-计算-量化(RCQ)解码仪(RCQQQ)结构。我们为RCQ参数提供了第一个完整和系统的设计框架,并证明在节点更新时足够精确的设计能够最大限度地扩大编码比和交换信息之间的相互信息。模拟结果显示,MIM-QBP解码器(MIM-QBP)的解码器在对高信号到高信号比时,在对高信号比值的LDP 30区域进行最高测试时,能够大大优于高投入的LDP 30 C 代码测试时,能够大大优于浮点的解码。