Safety is the primary priority of autonomous driving. Nevertheless, no published dataset currently supports the direct and explainable safety evaluation for autonomous driving. In this work, we propose DeepAccident, a large-scale dataset generated via a realistic simulator containing diverse accident scenarios that frequently occur in real-world driving. The proposed DeepAccident dataset contains 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset with 40k annotated samples. In addition, we propose a new task, end-to-end motion and accident prediction, based on the proposed dataset, which can be used to directly evaluate the accident prediction ability for different autonomous driving algorithms. Furthermore, for each scenario, we set four vehicles along with one infrastructure to record data, thus providing diverse viewpoints for accident scenarios and enabling V2X (vehicle-to-everything) research on perception and prediction tasks. Finally, we present a baseline V2X model named V2XFormer that demonstrates superior performance for motion and accident prediction and 3D object detection compared to the single-vehicle model.
翻译:安全是自动驾驶的首要任务。然而,目前没有任何已发布的数据集可以支持针对自动驾驶的直接且可解释的安全评估。在本研究中,我们提出了DeepAccident,一个通过真实模拟器生成的大规模数据集,其中包含发生在真实驾驶中频繁发生的各种事故场景。DeepAccident数据集包含57K个注释帧和285K个注释样本,大约是nuScenes数据集的7倍,其包含40k个带注释的样本。此外,我们提出了一项新任务——端到端运动和事故预测,该任务基于所提出的数据集,可用于直接评估不同自动驾驶算法的事故预测能力。此外,针对每个场景,我们设置了四辆车以及一个基础设施来记录数据,从而为事故场景提供了不同的视角,并在感知和预测任务上实现了V2X(车辆到任何事物)研究。最后,我们提出了一种名为V2XFormer的基线V2X模型,该模型在运动和事故预测以及3D物体检测方面表现出优越的性能,相比单车模型具有更好的效果。