This paper presents a well-scaling parallel algorithm for the computation of Morse-Smale (MS) segmentations, including the region separators and region boundaries. The segmentation of the domain into ascending and descending manifolds, solely defined on the vertices, improves the computational time using path compression and fully segments the border region. Region boundaries and region separators are generated using a multi-label marching tetrahedra algorithm. This enables a fast and simple solution to find optimal parameter settings in preliminary exploration steps by generating an MS complex preview. It also poses a rapid option to generate a fast visual representation of the region geometries for immediate utilization. Two experiments demonstrate the performance of our approach with speedups of over an order of magnitude in comparison to two publicly available implementations. The example section shows the similarity to the MS complex, the useability of the approach, and the benefits of this method with respect to the presented datasets. We provide our implementation with the paper.
翻译:本文提出了一种可扩展的平行算法,用于计算 Morse-Smale(MS)分割,包括区域分隔符和区域边界。通过仅在顶点上定义域的升降流形的分割,采用路径压缩来提高计算时间,完全分割边界区域。使用多标签行军四面体算法生成区域边界和区域分隔符。这使预先探索步骤中的最优参数设置的快速简单解决方案通过生成 MS 复杂的预览。它还提供了一种快速选项,以立即使用区域几何的快速视觉表示。两个实验证明了我们的方法的性能,比两个公开可用实现的速度提高一个数量级以上。示例部分显示了该方法与 MS 复杂的相似性,可用性以及针对所提供的数据集的优点。我们提供了附带论文的实现。