Prompt-based segmentation, also known as interactive segmentation, has recently become a popular approach in image segmentation. A well-designed prompt-based model called Segment Anything Model (SAM) has demonstrated its ability to segment a wide range of natural images, which has sparked a lot of discussion in the community. However, recent studies have shown that SAM performs poorly on medical images. This has motivated us to design a new prompt-based segmentation model specifically for medical image segmentation. In this paper, we combine the prompted-based segmentation paradigm with UNet, which is a widly-recognized successful architecture for medical image segmentation. We have named the resulting model PromptUNet. In order to adapt the real-world clinical use, we expand the existing prompt types in SAM to include novel Supportive Prompts and En-face Prompts. We have evaluated the capabilities of PromptUNet on 19 medical image segmentation tasks using a variety of image modalities, including CT, MRI, ultrasound, fundus, and dermoscopic images. Our results show that PromptUNet outperforms a wide range of state-of-the-art (SOTA) medical image segmentation methods, including nnUNet, TransUNet, UNetr, MedSegDiff, and MSA. Code will be released at: https://github.com/WuJunde/PromptUNet.
翻译:暂无翻译