Let $\Omega_i\subset\mathbb{R}^{n_i}$, $i=1,\ldots,m$, be given domains. In this article, we study the low-rank approximation with respect to $L^2(\Omega_1\times\dots\times\Omega_m)$ of functions from Sobolev spaces with dominating mixed smoothness. To this end, we first estimate the rank of a bivariate approximation, i.e., the rank of the continuous singular value decomposition. In comparison to the case of functions from Sobolev spaces with isotropic smoothness, compare \cite{GH14,GH19}, we obtain improved results due to the additional mixed smoothness. This convergence result is then used to study the tensor train decomposition as a method to construct multivariate low-rank approximations of functions from Sobolev spaces with dominating mixed smoothness. We show that this approach is able to beat the curse of dimension.
翻译:Let\ offega_ i\ subset\ mathbb{R ⁇ n_ i} $, $i= 1,\ ldots, m$, 给给域 。 在此文章中, 我们研究索博列尔夫空间函数的低端近似值$L2 (\\\ offega_ 1\ times\ times\ om), 以混合平滑为主导。 到此结束, 我们首先估计双轨近似值的等级, 即连续单值分解的等级 。 与来自索博列夫空间的单值平滑的函数相比, 比较一下\ cite{ GH14, GH19}, 我们得到更好的结果, 是因为额外的混和滑。 此趋同结果被用来研究 数列列列分解方函数的分解位置, 以构建多变量低端近似值, 以混合平滑为主导。 我们显示此方法能够战胜维的诅咒 。