Motivated by various applications, this article develops the notion of boundary control for Maxwell's equations in the frequency domain. Surface curl is shown to be the appropriate regularization in order for the optimal control problem to be well-posed. Since, all underlying variables are assumed to be complex valued, the standard results on differentiability do not directly apply. Instead, we extend the notion of Wirtinger derivatives to complexified Hilbert spaces. Optimality conditions are rigorously derived and higher order boundary regularity of the adjoint variable is established. The state and adjoint variables are discretized using higher order N\'ed\'elec finite elements. The finite element space for controls is identified, as a space, which preserves the structure of the control regularization. Convergence of the fully discrete scheme is established. The theory is validated by numerical experiments, in some cases, motivated by realistic applications.
翻译:在各种应用的推动下,本条为麦克斯韦尔在频率域内的方程式开发了边界控制概念。 表面卷律被证明是适当的正规化, 以便优化控制问题得到妥善处理。 由于所有基本变量都被假定为具有复杂的价值, 差异性的标准结果并不直接适用。 相反, 我们把Wirtinger衍生物的概念扩大到复杂的希尔伯特空间。 优化条件得到严格推导, 并确定了联合变量的更高顺序的常规性。 州和联合变量被使用更高的顺序 N\'ed\'elec 限定元素分解。 有限的控制空间被确定为一个空间, 保留控制规范的结构。 完全独立的计划的一致性得到了确立。 理论通过数字实验得到验证, 在某些情况下, 由现实的应用驱动。