项目名称: 振荡型积分的有界性质及其在色散方程中的应用
项目编号: No.11301249
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 石少广
作者单位: 临沂大学
项目金额: 23万元
中文摘要: 振荡型积分理论在偏微分方程、数学物理等领域有着广泛应用, 该理论是调和分析重要内容之一. 借助振荡型积分算子在Lebesgue空间或Morrey型空间中建立的时空估计和半群理论,可以得到非线性色散方程在低阶Sobolev空间中的适定性. 申请人与合作者已获得关于振荡型积分算子的有界性质及其在KdV型色散方程适定性中应用的一些结果. 特别地,研究了振荡积分算子及其交换子在加权 Morrey 空间中的有界性质;得到广义色散周期KdV 方程低正则条件下的局部适定性. 本项目拟深入研究振荡型积分算子有界性质及其在色散方程适定性中的应用,其中包括建立振荡型积分算子在Hardy型空间和Morrey型空间中的有界性质以及有界性判别法则;发展Morrey型空间的算子有界性理论并得到该类空间的交换子刻画;以上得到的有界性理论与能量方法和数论知识相结合解决一类KdV型色散方程 Cauchy问题的适定性.
中文关键词: 振荡积分算子;交换子;Morrey 空间;色散方程;适定性
英文摘要: The boundedness theory of oscillatory integral operators was one of the important components in harmonic analysis, and was widely used in the fields of partial differential equations, mathematical physics and so on. By the space-time estimates for oscillatory type integral operators on Lebesgue spaces or Morrey type spaces and semigroup theory, one can obtain the well-posedness of nonlinear dispersion equations in the low order Sobolev spaces. The applicant and his collaborators had obtained a series results on the boundedness of oscillatory type integral operators and their applications to the well-posedness of KdV type dispersion equations. Particularly, they had obtained the boundedness of oscillatory integral operators and their commutators on the weighted Morrey spaces. Also, they had established the local well-posedness for the dispersion generalized periodic KdV equations. This project will be devoted to the further research on the boundedness of oscillatory type integral operators and their applications to the well-posedness of dispersion equations, including establishing the boundedness of oscillatory type integral operators in Hardy type spaces and Morrey type spaces and establishing a criteria to determine the boundedness of certain oscillatory type integral operators; developing the boundedness of op
英文关键词: oscillatory integral operator;commutator;Morrey space;dispersion equation;well posedness