Spiking neural networks (SNNs) are promising in a bio-plausible coding for spatio-temporal information and event-driven signal processing, which is very suited for energy-efficient implementation in neuromorphic hardware. However, the unique working mode of SNNs makes them more difficult to train than traditional networks. Currently, there are two main routes to explore the training of deep SNNs with high performance. The first is to convert a pre-trained ANN model to its SNN version, which usually requires a long coding window for convergence and cannot exploit the spatio-temporal features during training for solving temporal tasks. The other is to directly train SNNs in the spatio-temporal domain. But due to the binary spike activity of the firing function and the problem of gradient vanishing or explosion, current methods are restricted to shallow architectures and thereby difficult in harnessing large-scale datasets (e.g. ImageNet). To this end, we propose a threshold-dependent batch normalization (tdBN) method based on the emerging spatio-temporal backpropagation, termed "STBP-tdBN", enabling direct training of a very deep SNN and the efficient implementation of its inference on neuromorphic hardware. With the proposed method and elaborated shortcut connection, we significantly extend directly-trained SNNs from a shallow structure ( < 10 layer) to a very deep structure (50 layers). Furthermore, we theoretically analyze the effectiveness of our method based on "Block Dynamical Isometry" theory. Finally, we report superior accuracy results including 93.15 % on CIFAR-10, 67.8 % on DVS-CIFAR10, and 67.05% on ImageNet with very few timesteps. To our best knowledge, it's the first time to explore the directly-trained deep SNNs with high performance on ImageNet.


翻译:Spik 神经网络(SNNS)在用于时空空间信息和事件驱动信号处理的可生物化网络编码中很有希望,这种编码非常适合神经变形硬件的节能实施。然而,SNNS的独特工作模式使得它们比传统网络更难培训。目前,有两个主要途径可以探索深层 SNNS 高性能的培训。第一个途径是将经过预先训练的 ANN 模型转换为 SNN 版本,通常需要一个长的深度编码窗口,用于趋同,在培训中无法利用spatio-时空功能解决时间性任务。另一个途径是直接在神经变异域域内直接培训SNNNNNNS。目前的方法仅限于浅层结构,因此难以使用大型数据集(e.g.图像Net)。为此,我们建议基于新兴的Spotio-stal-stalalal 10-stalal-stal-deal-deformlation 10-deal-deal report S-S-S-ST-NBS-lal ral intal intal intal intal-deal intal-deal-deal intal intal intal intal intal intal-ILILILI.

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
已删除
将门创投
4+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
5+阅读 · 2020年3月16日
Generative Adversarial Networks: A Survey and Taxonomy
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
27+阅读 · 2020年6月19日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
5+阅读 · 2020年3月16日
Generative Adversarial Networks: A Survey and Taxonomy
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
8+阅读 · 2018年3月20日
Top
微信扫码咨询专知VIP会员