We study the impact of neural networks in text classification. Our focus is on training deep neural networks with proper weight initialization and greedy layer-wise pretraining. Results are compared with 1-layer neural networks and Support Vector Machines. We work with a dataset of labeled messages from the Twitter microblogging service and aim to predict weather conditions. A feature extraction procedure specific for the task is proposed, which applies dimensionality reduction using Latent Semantic Analysis. Our results show that neural networks outperform Support Vector Machines with Gaussian kernels, noticing performance gains from introducing additional hidden layers with nonlinearities. The impact of using Nesterov's Accelerated Gradient in backpropagation is also studied. We conclude that deep neural networks are a reasonable approach for text classification and propose further ideas to improve performance.
翻译:我们研究的是神经网络在文本分类方面的影响。 我们的重点是以适当的重量初始化和贪婪的层预培训来培训深神经网络。 将结果与1层神经网络和辅助矢量机进行比较。 我们使用Twitter微博客服务的标签信息数据集开展工作,目的是预测天气条件。 我们建议了用于这项任务的特有提取程序,该程序应用远程语义分析来降低维度。 我们的结果显示,神经网络优于支持高斯内核的矢量机,注意到在引入非线性额外隐性层后产生的性能收益。 我们还研究了使用Nesterov的加速反光放大法的影响。 我们的结论是,深神经网络是文本分类的合理方法,并提出了改进性能的进一步想法。