Template-matching methods for visual tracking have gained popularity recently due to their comparable performance and fast speed. However, they lack effective ways to adapt to changes in the target object's appearance, making their tracking accuracy still far from state-of-the-art. In this paper, we propose a dynamic memory network to adapt the template to the target's appearance variations during tracking. An LSTM is used as a memory controller, where the input is the search feature map and the outputs are the control signals for the reading and writing process of the memory block. As the location of the target is at first unknown in the search feature map, an attention mechanism is applied to concentrate the LSTM input on the potential target. To prevent aggressive model adaptivity, we apply gated residual template learning to control the amount of retrieved memory that is used to combine with the initial template. Unlike tracking-by-detection methods where the object's information is maintained by the weight parameters of neural networks, which requires expensive online fine-tuning to be adaptable, our tracker runs completely feed-forward and adapts to the target's appearance changes by updating the external memory. Moreover, the capacity of our model is not determined by the network size as with other trackers -- the capacity can be easily enlarged as the memory requirements of a task increase, which is favorable for memorizing long-term object information. Extensive experiments on OTB and VOT demonstrates that our tracker MemTrack performs favorably against state-of-the-art tracking methods while retaining real-time speed of 50 fps.


翻译:视觉追踪的模版匹配方法最近因其可比较性能和速度而越来越受欢迎。 但是,它们缺乏有效的方法来适应目标对象外观的变化,使得其跟踪准确性仍然远低于最新技术。 在本文中,我们提议建立一个动态的内存网络,使模板适应目标的外观变异。 LSTM 被用作记忆控制器, 其输入是搜索功能图, 输出是内存块读写过程的控制信号。 由于搜索功能图中最初不知道目标的位置, 应用了一个关注机制, 将LSTM 输入的外观集中到潜在目标上。 为了防止有攻击性的适应性, 我们应用了封闭性残余模板来控制在跟踪过程中将模板与目标外观变异。 LSTM 使用一个动态式内存网络作为内存控制器的重量参数, 需要花费昂贵的在线微调才能适应。 我们的追踪器会全速前进, 并且通过更新外部记忆的外观来调整目标对象的外观的外观的外观的外观的外观变化。 此外, 我们的内径追踪能力会会提高的内径能能力, 。

8
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Fully-Convolutional Siamese Networks for Object Tracking论文笔记
统计学习与视觉计算组
9+阅读 · 2018年10月12日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Learning Discriminative Model Prediction for Tracking
Arxiv
8+阅读 · 2018年6月19日
Arxiv
5+阅读 · 2018年4月30日
VIP会员
Top
微信扫码咨询专知VIP会员