Biometric systems are vulnerable to Presentation Attacks (PA) performed using various Presentation Attack Instruments (PAIs). Even though there are numerous Presentation Attack Detection (PAD) techniques based on both deep learning and hand-crafted features, the generalization of PAD for unknown PAI is still a challenging problem. In this work, we empirically prove that the initialization of the PAD model is a crucial factor for the generalization, which is rarely discussed in the community. Based on such observation, we proposed a self-supervised learning-based method, denoted as DF-DM. Specifically, DF-DM is based on a global-local view coupled with De-Folding and De-Mixing to derive the task-specific representation for PAD. During De-Folding, the proposed technique will learn region-specific features to represent samples in a local pattern by explicitly minimizing generative loss. While De-Mixing drives detectors to obtain the instance-specific features with global information for more comprehensive representation by minimizing interpolation-based consistency. Extensive experimental results show that the proposed method can achieve significant improvements in terms of both face and fingerprint PAD in more complicated and hybrid datasets when compared with state-of-the-art methods. When training in CASIA-FASD and Idiap Replay-Attack, the proposed method can achieve an 18.60% Equal Error Rate (EER) in OULU-NPU and MSU-MFSD, exceeding baseline performance by 9.54%. The source code of the proposed technique is available at https://github.com/kongzhecn/dfdm.


翻译:在这项工作中,我们从经验上证明PAD模型的初始化是一般化的关键因素,社区对此很少讨论。根据这种观察,我们建议采用自监督的以学习为基础的方法,称为DF-DM。具体地说,DF-DM是以全球-地方观点为基础,同时采用脱发和脱混技术,为PAD提供具体任务代表。在脱发过程中,拟议技术将学习特定区域特征,以明确尽量减少归因损失,从而代表当地模式的样本。虽然解联驱动检测器,以获得全球信息的具体特征,通过尽量减少内推-DMD。具体地说,DF-DM是以全球-地方观点为基础,加上脱售和脱混成技术,以得出PADAD的特有代表性。 当IMFA-ML的面值和IMFA-RRR 数据比率在IMFA-RRA 和RAAFARRRRRRRA 数据比率中,拟议的方法在面面面-RMFA-RA-RDA-RRDRRR 和RADA-RAFARRRRRRRRRRRR 和RDF-RDM-RRDRDRRRRRRRR 和RRRRRR-R-SDM-I 方法中,可以 和R-SD-SD-SD-SD-SD-SD-SD-RT-RT-SD-RD-RD-RT-RT-RT-RT-RT-RT-SD-SD-SD-SD-SD-SD-S-S-R-R-R-RT-SD-R-R-RT-SD-SD-SD-SD-RT-SD-RT-RT-RT-SD-SD-SD-SD-SD-R-SD-R-R-R-SD-SD-SD-SD-SD-SD-R-R-R-SD-R-R-R-R-R-R-R-R-R-R-R</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2021年8月5日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员