We construct a symplectic integrator for non-separable Hamiltonian systems combining an extended phase space approach of Pihajoki and the symmetric projection method. The resulting method is semiexplicit in the sense that the main time evolution step is explicit whereas the symmetric projection step is implicit. The symmetric projection binds potentially diverging copies of solutions, thereby remedying the main drawback of the extended phase space approach. Moreover, our semiexplicit method is symplectic in the original phase space. This is in contrast to existing extended phase space integrators, which are symplectic only in the extended phase space. We demonstrate that our method exhibits an excellent long-time preservation of invariants, and also that it tends to be as fast as and can be faster than Tao's explicit modified extended phase space integrator particularly for small enough time steps and with higher-order implementations and for higher-dimensional problems.
翻译:我们结合Pihajoki的扩展相空间方法和对称投影方法构造了一种适用于非可分离哈密顿系统的辛积分器。所得方法是半显式的,即主要时间演化步骤是显式的,而对称投影步骤是隐式的。对称投影通过捆绑潜在发散的解的副本来修复扩展相空间方法的主要缺点。此外,我们的半显式方法在原始相空间中是辛的。这与现有的扩展相空间积分器不同,后者仅在扩展相空间中是辛的。我们证明了我们的方法展现出极佳的不变量长时间保值,而且在小时间步和高阶实现以及高维问题方面,它往往与并且甚至比Tao的显式改进的扩展相空间积分器更快。