项目名称: 模糊收敛群及其在粗糙集中的应用
项目编号: No.11501435
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 杨小飞
作者单位: 西安工程大学
项目金额: 18万元
中文摘要: 本项目旨在把群运算融入模糊收敛空间,以提升模糊收敛空间的拓扑性质。首先,整合模糊收敛空间的多种定义,揭示它们之间的联系,进而为本项目找到一个合适的框架,使得在这个框架下项目的关键问题顺利解决。其次,利用代数理论和范畴论,并借助于柯西滤子,建立模糊收敛群、模糊柯西群和模糊拓扑群的联系,在此基础上,给出它们的完备化形式。最后,讨论了模糊收敛群在粗糙集理论中的应用,利用生成子群和模糊集扩张原理,得到一种在粗糙集理论中信息恢复的方法。
中文关键词: 模糊代数;模糊收敛群;粗糙集;完备化
英文摘要: This project is devoted to incorporating group into fuzzy convergence space,and so fuzzy convergence group is topologically much better than fuzzy convergence space.The project is arranged as follows:. Firstly, various definitions of fuzzy convergence space are considered, and their relationships are revealed. Further, the suitable framework for this project is established.. Secondly, based on categorical theory and Cauchy filters in fuzzy convergence group, the relationships between fuzzy convergence group, fuzzy Cauchy group and fuzzy topology group are established. Based on these facts, the completions of fuzzy Cauchy group, fuzzy convergence group, and fuzzy topology group are considered.. Lastly, the application of fuzzy convergence group is considered.With the help of generated subgroup and fuzzy set extension, a method of the recovery information on rough set is obtained.
英文关键词: fuzzy algebra;fuzzy convergence group;rough set;completion