Distributions in superspace constitute a very useful tool for establishing an integration theory. In particular, distributions have been used to obtain a suitable extension of the Cauchy formula to superspace and to define integration over the superball and the supersphere through the Heaviside and Dirac distributions, respectively. In this paper, we extend the distributional approach to integration over more general domains and surfaces in superspace. The notions of domain and surface in superspace are defined by smooth bosonic phase functions $g$. This allows to define domain integrals and oriented (as well as non-oriented) surface integrals in terms of the Heaviside and Dirac distributions of the superfunction $g$. It will be shown that the presented definition for the integrals does not depend on the choice of the phase function $g$ defining the corresponding domain or surface. In addition, some examples of integration over a super-paraboloid and a super-hyperboloid will be presented. Finally, a new distributional Cauchy-Pompeiu formula will be obtained, which generalizes and unifies the previously known approaches.
翻译:超级空间的分布构成建立集成理论的一个非常有用的工具, 特别是, 分配被用来通过 Heaviside 和 Dirac 的分布, 使Cauchy 公式适当扩展为超级空间, 并界定超球和超球的集成。 在本文中, 我们扩展分配方法, 将集成范围扩大到超空间的更一般性域和表面。 超空间的域和表面概念由光滑的bosonic 级函数 $g 来定义。 这允许以超功能的 Heaviside 和 Dirac 的分布来定义域内整体和方向( 以及非方向的) 表面组成部分。 将显示, 组合的提出定义并不取决于阶段函数的选择 $g$g 来界定相应的域或表面。 此外, 将介绍超生素和超级He- bhobolid 的整合实例。 最后, 将获得一种新的分布式 Cauchi- Pompeiu 公式, 以及非方向化为先前已知方法的通用和未加 。