This paper introduces a deep-learning based efficient classifier for common dermatological conditions, aimed at people without easy access to skin specialists. We report approximately 80% accuracy, in a situation where primary care doctors have attained 57% success rate, according to recent literature. The rationale of its design is centered on deploying and updating it on handheld devices in near future. Dermatological diseases are common in every population and have a wide spectrum in severity. With a shortage of dermatological expertise being observed in several countries, machine learning solutions can augment medical services and advise regarding existence of common diseases. The paper implements supervised classification of nine distinct conditions which have high occurrence in East Asian countries. Our current attempt establishes that deep learning based techniques are viable avenues for preliminary information to aid patients.


翻译:本文介绍了一种基于深学习的常见皮肤病症有效分类方法,针对的是无法方便地接触皮肤专家的人。我们报告大约80%的准确性,根据最近的文献,在初级护理医生成功率达到57%的情况下,我们报告这种准确性。其设计的基本原理是在最近的将来在手持装置上部署和更新它。皮肤病在每一个人口中都是常见的,其严重程度很广。随着几个国家的皮肤病学专业知识的缺乏,机器学习解决方案可以增加医疗服务,就常见疾病的存在提供咨询。该文件对东亚国家高发病率的9种不同情况进行了监督分类。我们目前的尝试证明深层次的学习技术是帮助病人的初步信息的可行途径。

4
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2019年3月14日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Top
微信扫码咨询专知VIP会员